Extracting The Best Features For Predicting The Trend Of Tehran Stock Exchange (TSE)
کد مقاله : 1100-CFIS (R1)
نویسندگان
فرزانه اکبرزاده *1، علی سلیمانی ایوری2
1دانشکده مهندسی کامپیوتر، دانشگاه صنعتی شاهرود، شاهرود، ایران
2دانشکده مهندسی کامپیوتر، دانشگاه صنعتی شاهرود، شاهرود، ایران
چکیده مقاله
Predicting stock price trend is an important task as well as difficult problem. This prediction depends on various factors and their complex relationships. Feature extraction is a way to discover these factors from initial data. In this paper, several famous feature extraction methods are proposed as a data engineering approach for TSE. The results of predicting next day trend by k-Nearest Neighbors (kNN) predictor, shows indicators are best extracted features.
کلیدواژه ها
stock, trend prediction, feature extraction method, kNN
وضعیت: پذیرفته شده برای ارائه شفاهی